Code No: 133BD

R16

- 1.a) Find the analytic function whose real part is $e^x x \cos y = e^x y \sin y$.
 - b) Show that if u is harmonic and v is a harmonic conjugate of u, then u is a harmonic conjugate of v. [7+8]
- 2.a) Show that the function $x^2 + iy^3$ is not analytic anywhere. Reconcile this with the fact that the Cauchy–Riemann equations are satisfied at x = 0, y = 0.
 - b) Evaluate $\begin{array}{c} 2,5\\ 0,1 \end{array}$ $3x + y \ dx + 2y x \ dy$ along: i) the curve $y = x^2 + 1$, ii) the straight line joining (0, 1) and (2, 5), iii) the straight lines from (0, 1) to (0, 5). [7+8]
- 3.a) Integrate counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.
 - $f z = z^3$
 - f z = tan 1/4z
- b) Integrate by Cauchy sontegral formula $z^2/z^2 1$ counter clockwise around the circles z + 1 = 1 and $z + 1 i = \pi/2$. [8+7]
- 4.a) Find the Taylor series with center z_0 and find its radius of convergence. 1/ 1-z, $z_0 = i$
- b) Find the Laurent series that converges for $0 < z z_0 < R$ and determine the precise region of convergence. Show the details $\frac{e^z}{z^{-1/2}}$, $z_0 = 1$. [8+7]
- 5.a) Find all the singularities in the finite plane and the corresponding residues $\frac{\sin 2z}{z^6}$

b) Evaluate counterclockwise $_{c}e^{1/z}dz C$: the unit circle. [8+7]

6. Evaluate the following:

a)
$$\int_{0}^{2\pi} \frac{\sin^2 \theta}{5 - 4\cos \theta} d\theta$$

b) $\int_{0}^{\infty} \frac{dx}{1 + x^{2/3}}$ [8+7]

Download all NOTES and PAPERS at StudentSuvidha.com

- 7.a) Is the given function even or odd or neither even nor odd? Find its Fourier series. f x = x², -1 < x < 1 , p = 2 And hence show that 1/6 π² = 1 + 1/4 + 1/9 + 1/16
 b) Find the cosine transform of f_c w of f x = 1 if 0 < x < 1 f x = -1 if 1 < x < 2 f x = 0 if x > 2
 [8+7]
- 8. Find the deflection u x, t for the string of length L and $c^2 = 1$ when the initial velocity is zero and the initial deflection with small k (say, 0.01) is $k \sin \pi x 1/2 \sin 2\pi x$.

[15]

Download all NOTES and PAPERS at StudentSuvidha.com